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a b s t r a c t 

Structural magnetic resonance imaging (MRI) has shown great clinical and practical values in computer- 

aided brain disorder identification. Multi-site MRI data increase sample size and statistical power, but are 

susceptible to inter-site heterogeneity caused by different scanners, scanning protocols, and subject co- 

horts. Multi-site MRI harmonization (MMH) helps alleviate the inter-site difference for subsequent anal- 

ysis. Some MMH methods performed at imaging level or feature extraction level are concise but lack 

robustness and flexibility to some extent. Even though several machine/deep learning-based methods 

have been proposed for MMH, some of them require a portion of labeled data in the to-be-analyzed tar- 

get domain or ignore the potential contributions of different brain regions to the identification of brain 

disorders. In this work, we propose an attention-guided deep domain adaptation (AD 

2 A) framework for 

MMH and apply it to automated brain disorder identification with multi-site MRIs. The proposed frame- 

work does not need any category label information of target data, and can also automatically identify dis- 

criminative regions in whole-brain MR images. Specifically, the proposed AD 

2 A is composed of three key 

modules: (1) an MRI feature encoding module to extract representations of input MRIs, (2) an attention 

discovery module to automatically locate discriminative dementia-related regions in each whole-brain 

MRI scan, and (3) a domain transfer module trained with adversarial learning for knowledge transfer 

between the source and target domains. Experiments have been performed on 2572 subjects from four 

benchmark datasets with T1-weighted structural MRIs, with results demonstrating the effectiveness of 

the proposed method in both tasks of brain disorder identification and disease progression prediction. 

© 2021 Elsevier B.V. All rights reserved. 

1

c

i

s

i

2

t

m

o

A

v

c

i

b

p

i

h

i

1

s

t

t

s

f

c

t

l

h

o

h

1

. Introduction 

Structural magnetic resonance imaging (MRI) has shown great 

linical and practical values in computer-aided brain disorder 

dentification, such as Alzheimer’s disease (AD) and its early 

tage, i.e., Mild Cognitive Impairment (MCI), is of great clin- 

cal value ( Brookmeyer et al., 2007; Alzheimer’s Association, 

019 ). With MRI data acquired from multiple neuroimaging cen- 

ers/sites ( Frisoni et al., 2010 ), numerous learning-based learning 

ethods have been proposed to tackle the problem of brain dis- 

rder identification ( Falahati et al., 2014; Cuingnet et al., 2011 ). 

mong these methods, deep learning ( LeCun et al., 2015 ), e.g., con- 

olutional neural networks (CNNs) ( Krizhevsky et al., 2012 ), has re- 

ently demonstrated its advantages over traditional machine learn- 

ng methods in neuroimaging-based diagnosis and prognosis of 

rain dementia ( Liu et al., 2018; 2020 ). 
∗ Corresponding author. 

E-mail address: mxliu@med.unc.edu (M. Liu). 
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Multi-site MRI data help increase sample size and statistical 

ower but maybe susceptible to inter-site heterogeneity caused for 

nstance, by different scanners, scanning protocols, and subject co- 

orts. Previous studies typically assume that multi-site neuroimag- 

ng data are sampled from the identical distribution ( Valiant, 

984; Lian et al., 2020 ), and directly apply a model (trained on 

ource domain) to target data. However, such an assumption is 

oo strong and may not hold in real-world applications due to 

he inter-site heterogeneity ( Quionero-Candela et al., 2009 ). Multi- 

ite MRI harmonization (MMH) helps alleviate the inter-site dif- 

erence for subsequent analysis. Failure to perform MMH will 

ause biased results and erroneous conclusions that can poten- 

ially mislead future scientific endeavors. To deal with this prob- 

em, some methods facilitate MMH at the imaging level through 

ardware and software tuning ( Clarke et al., 2020 ). Some meth- 

ds adopt statistical techniques at the feature extraction level for 

MH. Pomponio et al. (2020) estimate the location and scale dif- 

erences in ROI volumes across sites, and then remove these ef- 

ects to achieve standardized ROI volumes for feature extraction. 

robel et al. ( Wrobel et al., 2020 ) adopt non-linear transforma- 

https://doi.org/10.1016/j.media.2021.102076
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102076&domain=pdf
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ions which are calculated by aligning distribution functions of in- 

ensity values to facilitate MMH. These methods are concise and 

ffective to some extent, but often rely on some prior knowledge 

nd assumptions which limit their robustness and flexibility. A 

ore promising solution for MMH is to use domain adaptation 

ethods to improve the transferability of models across multi-site 

ata ( Cheng et al., 2015; Madani et al., 2018 ), thereby generating a

odel that can work well on both source and target domains. 

Existing domain adaptation methods can be generally divided 

nto two categories: (1) feature transfer and (2) model transfer 

pproaches. The first category aims to learn transferable features 

hrough deep learning techniques. It has been revealed that deep 

onvolutional networks (CNNs) can be used to learn discriminative 

nd transferable features across different domains ( Oquab et al., 

014; Zeiler and Fergus, 2014 ). Based on this finding, CNN has 

een introduced to deal with various tasks of brain dementia clas- 

ification, aiming to achieve higher transferability across different 

ites ( Korolev et al., 2017; Lian et al., 2020 ). These methods do not

se target samples during the learning process, which may limit 

heir generalizability to the target data. The second category aims 

o learn transferable models by fine-tuning a pretrained model us- 

ng samples in the target domain ( Khan et al., 2019; Hosseini-Asl 

t al., 2016; Cheng et al., 2015 ). Taking the domain heterogeneity 

nto consideration during the learning process, these methods tend 

o show higher generalizability. However, these methods often suf- 

er from the following limitations. First, many of them require a 

art of labeled target data for model fine-tuning, thus greatly limit- 

ng their applications to unsupervised scenarios where no labeled 

arget data are available. Note that labeling MRIs is a tedious and 

ime-consuming task that requires the participation of experienced 

adiologists. Second, most existing methods equally treat all vox- 

ls in the whole-brain MRI, ignoring the potential different contribu- 

ions of different regions to brain disorder identification, resulting in 

ess robust models. It has been revealed that different brain regions 

ave different effects on brain disorders ( Mu and Gage, 2011; Ott 

t al., 2010; Lian et al., 2020 ). Intuitively, incorporating such prior 

nowledge into the training process of domain adaptation models 

ill improve the performance of brain disorder identification. 

In this work, we propose an attention-guided deep domain 

daptation (AD 

2 A) framework for MMH and apply it to the au- 

omated identification of brain disorders. The proposed AD 

2 A 

ethod leverages domain adaptation to overcome the shortage of 

abeled target data for model fine-tuning (transferability enhance- 

ent) via adversarial learning ( Goodfellow et al., 2014; Ganin and 

empitsky, 2015 ) and also can locate disease-related brain areas 

hared by cross-domain MRIs via an attention mechanism ( Zhou 

t al., 2016; Woo et al., 2018 ). As shown in Fig. 1 , our AD 

2 A frame-

ork consists of three key components: (1) an MRI feature encod- 

ng module that extracts hierarchical feature representations of the 

nput brain MRIs in both source and target domains, (2) an at- 

ention discovery module that automatically locates disease-related 

egions in whole-brain MRIs, and (3) a domain transfer module 

ith adversarial learning that transfers knowledge between the 

ource and target domains. In the experiments, the proposed AD 

2 A 

ethod is evaluated on four independent datasets (i.e., ADNI- 

 ( Jack Jr et al., 2008 ), ADNI-2, ADNI-3, and AIBL ( Ellis et al.,

009 )) for multiple AD-related diagnosis tasks. Experimental re- 

ults demonstrate that AD 

2 A can yield superior cross-domain di- 

gnostic performance compared with the state-of-the-art methods, 

nd also effectively identify AD-related discriminative atrophy lo- 

ations in MRIs. 

The major contributions of this work can be summarized as fol- 

ows. First , an unsupervised MMH framework is proposed for MRI- 

ased brain disorder identification without requiring any label in- 

ormation of target data. Second , we propose to incorporate dis- 

riminative brain region localization into the model learning pro- 
2 
ess for domain adaptation, which can reduce the negative influ- 

nce of brain regions that are uninformative for prognosis. Be- 

ides , extensive experiments have been performed on 2,572 sub- 

ects from four benchmark datasets with multi-site structural MRI 

cans. 

The remainder of this paper is organized as follows. We first 

eview relevant studies in Section 2 . Section 3 introduces the ma- 

erials used in this work and the details of the proposed method. 

n Section 4 , we present the experimental settings, evaluation met- 

ics, and experimental results. We further analyze the influence of 

everal key components of the proposed method and discuss the 

imitations of the current work and future work in Section 5 . The 

aper is finally concluded in Section 6 . 

. Related works 

.1. MRI-based brain disorder analysis 

Structural MRI data have been widely used in the computer- 

ided systems for brain disorder diagnosis and prognosis. Con- 

entional methods usually extract hand-crafted MRI features and 

nhance robustness through feature fusion or selection ( Falahati 

t al., 2014; Cuingnet et al., 2011; Shi et al., 2014; Zhu et al., 2014;

athore et al., 2017 ). Klöppel et al. (2008) extracted the grey mat- 

er density map of the entire brain MRI to train a support vector 

achine (SVM) for AD classification. Cho et al. (2012) used con- 

erted thickness features with an incremental learning-based LDA 

or AD classification. Chincarini et al. (2011) proposed to extract 

tatistical and textural features of predefined brain regions, and 

ubsequently trained an SVM for MCI conversion prediction. 

In recent years, deep learning (e.g., CNN) has achieved promis- 

ng results in computer vision ( Krizhevsky et al., 2012; He 

t al., 2016 ) and neuroimaging analysis ( Shen et al., 2017 ). 

upta et al. (2013) used a sparse auto-encoder to extract fea- 

ures from brain MRIs, followed by a 2D CNN for AD clas- 

ification. Suk et al. (2014) proposed to use Deep Boltzmann 

achine (DBM) trained with multi-modal images, i.e., MRI and 

ositron emission tomography (PET), for automated AD classifica- 

ion. Korolev et al. (2017) proposed VoxCNN, a 3D VGG-like CNN, 

or brain MRI classification. Parisot et al. (2018) proposed to adopt 

raph convolutional networks (GCN) for the task of MCI conversion 

rediction. 

These methods have shown promising performance for the task 

f brain dementia identification. However, they only rely on source 

ata for model learning and ignore the distribution of target data, 

hich may limit their transferability. 

.2. Domain adaptation for medical image analysis 

Conventional machine learning methods typically assume that 

he training/source MRI data and test/target MRI data have iden- 

ical distribution. However, this assumption does not always hold 

n real-world applications. For example, domain distributional het- 

rogeneity (i.e., domain shift) is widespread among multi-site 

RI datasets caused by different scanners, scanning parameters, 

nd subject populations. Therefore, multi-site MRI harmonization 

MMH) is essential to avoid biased results and erroneous conclu- 

ions by alleviating the inter-site difference. 

As a promising solution to MMH, domain adaptation has at- 

racted increasing attention in the filed ( Kouw and Loog, 2019; 

ang and Deng, 2018; Csurka et al., 2017; Pan and Yang, 2010 ). 

achinger and Reuter (2016) computed thickness and shape fea- 

ures from brain MRIs, then trained an elastic-net regression model 

ased on instance weighting strategy to alleviate domain shift. 

oradi et al. (2014) proposed to utilize a transductive support vec- 

or machine (TSVM) for domain adaptation, based on gray matter 
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Fig. 1. Illustration of the proposed attention-guided deep domain adaptation (AD 2 A) framework for MRI-based dementia identification. There are three main components: 

(1) a feature encoding module, (2) an attention discovery module, and 3) a domain transfer module with adversarial learning for knowledge transfer between the source 

and target domains. 
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Table 1 

Demographic and clinical information of subjects included in four benchmark 

datasets (i.e., ADNI-1, ADNI-2, ADNI-3, and AIBL). The gender is presented as 

male/female. The age, education years, and mini-mental state examination (MMSE) 

scores are presented as mean ± standard deviation (std). 

Datasets Category Gender Age Education MMSE 

ADNI-1 NC 119/112 76 . 0 ± 5 . 0 15 . 9 ± 4 . 1 28 . 5 ± 2 . 6 

sMCI 101/46 74 . 6 ± 7 . 7 15 . 6 ± 3 . 0 27 . 1 ± 1 . 5 

pMCI 101/64 74 . 8 ± 6 . 8 15 . 4 ± 3 . 5 26 . 5 ± 1 . 1 

AD 106/99 75 . 7 ± 7 . 6 13 . 1 ± 6 . 8 24 . 1 ± 1 . 4 

ADNI-2 NC 110/95 73 . 2 ± 6 . 4 16 . 5 ± 2 . 5 26 . 5 ± 1 . 3 

sMCI 146/107 71 . 0 ± 7 . 4 16 . 2 ± 2 . 1 27 . 2 ± 1 . 5 

pMCI 52/36 73 . 1 ± 7 . 0 16 . 0 ± 2 . 5 27 . 0 ± 2 . 0 

AD 95/67 74 . 2 ± 8 . 0 15 . 9 ± 2 . 6 24 . 0 ± 1 . 2 

ADNI-3 NC 118/211 70 . 4 ± 7 . 5 15 . 7 ± 2 . 8 29 . 1 ± 1 . 1 

MCI 100/78 72 . 4 ± 7 . 7 16 . 2 ± 2 . 7 27 . 8 ± 2 . 1 

AD 37/23 74 . 1 ± 12 . 7 15 . 9 ± 2 . 6 23 . 9 ± 2 . 8 

AIBL NC 192/255 72 . 8 ± 6 . 6 – 28 . 7 ± 1 . 2 

AD 30/41 73 . 4 ± 7 . 8 – 20 . 5 ± 5 . 7 
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ensity features of brain MRIs. Li et al. (2019) adopted subspace 

lignment to reduce domain boundaries and trained a discrimina- 

ive analysis classifier for AD identification. Cheng et al. (2015) pro- 

osed a feature selection method based on gray matter tissue vol- 

mes of predefined regions-of-interest (ROIs), followed by a TSVM 

or MCI conversion prediction. Madani et al. (2018) proposed a 

emi-supervised generative adversarial network (GAN) model for 

hest X-ray classification, which can incorporate unlabeled target 

ata into network training to enhance the model transferability. 

hang et al. (2019b) proposed a noise GAN model, an image-to- 

mage translation GAN, which can map source samples to the tar- 

et domain to alleviate the domain shift. Ahn et al. (2020) pro- 

osed a zero-bias convolutional auto-encoder to learn features of 

arget samples in an unsupervised manner. Khan et al. (2019) first 

retrained a VGG network on natural images, then performed 

ayer-wise fine-tuning with MRIs for AD classification. Hosseini- 

sl et al. (2016) proposed an adaptive 3D CNN that was pretrained 

n MRIs in the source domain, and then fine-tuned task-specific 

ayers on MRIs in the target domain. Zhang et al. (2019a) devel- 

ped an unsupervised conditional adversarial network for brain 

isease identification, by learning both domain-invariant and 

omain-specific features of structural MRI scans. However, existing 

ethods rarely exploit the unique characteristics of brain images; 

hat is, different brain regions may have different contributions to 

he recognition of specific brain diseases. 

. Materials and methodology 

.1. Materials and MRI preprocessing 

Four benchmark datasets with baseline MRIs are used in this 

ork, including (1) Alzheimer’s Disease Neuroimaging Initiative 

ADNI-1) ( Jack Jr et al., 2008 ), (2) ADNI-2, (3) ADNI-3, and (4) Aus-

ralian Imaging Biomarkers and Lifestyle Study of Aging database 

AIBL) ( Ellis et al., 2009 ). Subjects that simultaneously appear in 

DNI-1, ADNI-2 and ADNI-3 are removed from ADNI-2 and ADNI-3 

or the sake of independent evaluation. Specifically, ADNI-1 con- 

ists of 748 subjects with 1.5T T1-weighted structural MRIs, in- 

luding 205 AD, 231 cognitively normal (CN), 165 progressive MCI 

pMCI) and 147 stable MCI (sMCI) subjects. ADNI-2 contains 708 

ubjects with 3T T1-weighted structural MRIs, including 162 AD, 

05 CN, 88 pMCI and 253 sMCI subjects. ADNI-3 involves 567 sub- 
3 
ects with 3T T1-weighted structural MRIs, including 60 AD, 329 

N, 178 MCI subjects. Note that there are no pMCI and sMCI labels 

or the MCI subjects in ADNI-3. Besides, AIBL has structural MRIs 

cquired from 549 subjects, including 71 AD, 447 CN, 11 pMCI 

nd 20 sMCI subjects. The demographic and clinical information 

f studied subjects can be found in Table 1 . 

All brain MR images were preprocessed through a standard 

ipeline, including skull stripping, intensity correction, and spatial 

ormalization to Automated Anatomical Labeling (AAL) template. 

o avoid losing useful information, we followed the requirement 

hat all brain tissues should be completely preserved. 

.2. Problem setting 

We focus on the problem of unsupervised domain adaptation 

or MRI-based brain disorder classification. Let X × Y represent the 

oint space of samples (subjects) and the corresponding category 

abels. A source domain S and a target domain T are defined on the 

oint space, with unknown distributions P and Q ( P � = Q), respec- 

ively. Suppose N s samples are provided with category labels in the 

ource domain, i.e., D S = { (x S 
i 
, y S 

i 
) } N s 

i =1 
. Also, we have N t samples in

he target domain but without category labels, i.e., D T = { (x T 
j 
) } N t 

j=1 
.

hese two domains are assumed to share the same set of cate- 

ory labels. Our goal is to design an unsupervised learning model, 
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hich is constructed on labeled source samples and can accurately 

redict the labels of subjects in the target domain without any 

elp of label information of target samples. 

There are two important concepts for understanding the prob- 

em in this work: (1) category label and (2) domain label . Specif- 

cally, the category label indicates the category of a subject (e.g., 

D, CN, and MCI). The term “label” or “label information” refers 

o the category label in this paper. The domain label indicates the 

omain to which the subject belongs. For example, “1” indicates 

he source domain, and “0” indicates the target domain. It should 

e noted that the domain label is determined by the model setting 

or a specific task. 

.3. Proposed method 

As shown in Fig. 1 , the proposed attention-guided deep domain 

daptation (AD 

2 A) framework consists of three main components: 

1) a feature encoding module, (2) an attention discovery module, 

nd 3) a domain transfer module. We now introduce the details of 

ach component as follows. 

.3.1. MRI feature encoding 

We design a 3D CNN to extract features of brain MR images 

oth in both source and target domains. As illustrated in the left 

anel of Fig. 1 , the feature encoding module contains ten 3 × 3 × 3 

onvolution (Conv) layers, with the channel numbers of 8, 8, 16, 

6, 32, 32, 64, 64, 128, and 128, respectively. Each Conv layer is 

ollowed by batch normalization (BN) and a rectified linear unit 

ReLU). To avoid overfitting and enlarge receptive fields, down- 

ampling operations (stride: 2 × 2 × 2 ) are added to the Conv2, 

onv4, Conv6, Conv8 and Conv10, respectively. 

.3.2. Dementia attention discovery 

Previous studies have revealed that brain disorders are highly 

ssociated with certain regions in the brain ( Mu and Gage, 2011; 

tt et al., 2010; Woo et al., 2018; Lian et al., 2020 ). In addition, we

lso find in our experiments that locating disease-related areas can 

mprove the transferability of the learning model. Based on these 

otivations, we design a trainable attention discovery module to 

utomatically identify essential brain regions that are more closely 

inked to subject-specific abnormal status in brain MR images. 

As illustrated in the middle part of Fig. 1 , the feature maps gen-

rated by the Conv10 layer of feature encoder is used as the input 

f the proposed attention discovery module. Let M = [ M 1 , . . . , M C ]

enote the input feature map, where M i ∈ R 

H×W ×D (i = 1 , 2 , . . . , C)

s the feature map at the i th channel and C represents the number 

f channels. Cross-channel average pooling and max-pooling are 

hen performed on M to generate two feature maps, i.e., M a v g and 

 max , respectively. We concatenate these two feature maps and 

end them to a Conv layer (i.e., Conv 11 with only one channel) to 

roduce a spatial attention map. The sigmoid function is then used 

s the nonlinear activation to calculate the final attention map A . 

he role of the sigmoid function is to constrain each element in 

 within the range of [0,1], which can reflect the importance of 

ifferent areas in the MRI feature map. That is, important brain ar- 

as in the feature map would be assigned larger weights, while 

ess important ones would be assigned smaller weights. Mathe- 

atically, the attention map is defined as: 

 = σ ( f 3 ×3 ×3 ([ M max , M a v g ])) , (1) 

here σ represents the sigmoid function and f 3 ×3 ×3 denotes a 

onvolution operator with a 3 × 3 × 3 kernel. 

As shown in Fig 1 , the proposed AD 

2 A has two parallel branches

orresponding to the source and target domains, respectively. Each 

f the branches follows the same pipeline to generate the atten- 

ion maps as presented above. Let A 

s and A 

t denote the attention 
4 
aps for source and target domains, respectively. To encourage the 

ttention consistency and transfer semantic information from the 

ource domain to target domain, we design an attention consistency 

oss in AD 

2 A, which is defined as the mean square difference be- 

ween A 

s and A 

t as follows: 

 att = 

1 

N × H × W × D 

N ∑ 

i =1 

∥∥A 

s 
i − A 

t 
i 

∥∥, (2) 

here N is the number of samples. 

Besides the attention consistency loss, our attention module 

lso leverages both image-level category labels and domain labels 

s supervision for end-to-end training (see Fig. 1 ). This is the main 

ifference between our model and previous deep learning mod- 

ls (e.g., localized class activation maps Zhou et al., 2016 ) that are 

rained by using only category labels as supervision. Therefore, our 

ttention module helps highlight discriminative regions across dif- 

erent domains, while others can only focus on a single domain. 

.3.3. Domain transfer via adversarial learning 

Due to the data heterogeneity and distribution difference be- 

ween the source and target domains, a model that is well-trained 

n a source domain may have degraded performance when di- 

ectly applied to the target domain. It is especially challenging 

hen there is no label information offered in the target domain 

or model fine-tuning. Thus our goal is to build a robust learning 

odel based on only labeled source data. To this end, we develop a 

omain transfer module in the proposed AD 

2 A (see the right panel 

f Fig. 1 ). This module is trained in an adversarial learning manner 

o balance the classification performance and generalization abil- 

ty. More importantly, it does not require any label information of 

arget samples. 

Specifically, the proposed transfer module consists of a category 

lassifier for classification and a domain discriminator/classifier for 

elling whether an input sample is from the source or target do- 

ain. Through co-training of these two classifiers, the proposed 

D 

2 A is encouraged to not only achieve good classification perfor- 

ance on source data but also learn domain-invariant features for 

oth domains. In this way, we could improve the robustness of the 

earned model when applying it to the target domain. 

Category classifier The category classifier C S is built to estimate 

he labels of input MRI samples. Since no labeled data are avail- 

ble for the target domain, we can only train this classifier using 

abeled data in the source domain. Using the feature map gener- 

ted by the feature encoder and weighted by the attention map as 

nput, we employ three fully-connected layers with 128, 64 and 2 

nits in the category classifier for classification, with the loss de- 

ned as: 

 cls = 

1 

N s 

N s ∑ 

i =1 

L (C S (x 

S 
i ) , y 

S 
i ) , (3) 

here L (·) denotes the cross-entropy loss. 

Domain discriminator The domain discriminator C D is designed 

o distinguish MRI features from different domains. It is trained by 

dversarial learning in which it serves as a player (the other one 

s the feature encoding module) in a min-max game. In this game, 

e try to maximize the loss of the domain classifier; thus the fea- 

ure encoding module is encouraged to learn domain-invariant MRI 

eatures for both source and target data. To this end, three suc- 

essive fully-connected layers with 128, 64 and 2 units are added 

n the domain discriminator. For network training, a training set 

 (x 1 , y 
D 
1 ) , (x 2 , y 

D 
2 ) , . . . , (x N , y 

D 
N ) } with N samples is formed, where

 

D 
i 

= 1 indicates that x i comes from the source domain and y D 
i 

= 0

enotes that x i is from the target domain. In each batch, we se- 

ect equal numbers of training samples from both the source do- 

ain and target domain to avoid bias towards either of them. Then 
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he domain discriminator is trained by minimizing the following 

oss: 

 dom 

= 

1 

N 

N ∑ 

i =1 

L 
(
C D ( x i ) , y 

D 
i 

)
, (4) 

here L (·) denotes the cross-entropy loss and y D 
i 

is the domain 

abel. 

The final goal of our system is to learn domain-invariant and 

isease-related features across the source and target domains. To 

chieve this, the task can be performed by learning a model that is 

apable of predicting category labels correctly without any domain 

ues. In this work, we jointly minimize the category classification 

oss in Eq. (3) , minimize the attention consistency loss in Eq. (2) ,

nd maximize the domain classification loss in Eq. (4) . The overall 

bjective function of AD 

2 A is defined as follows: 

 total = L cls + αL att − βL dom 

, (5) 

here α and β are the hyperparameters used to control the con- 

ributions of three terms. The proposed method can be used in var- 

ous applications where the to-be-analyzed domain has no labeled 

ata, especially for problems with few or even no labeled target 

ata. 

.3.4. Implementation 

The proposed AD 

2 A model was implemented using Python 

ased on PyTorch. The network was trained for 100 epochs. The 

dam solver ( Kingma and Ba, 2015 ) was used as the optimizer 

ith a learning rate of 1 × 10 −4 and a batch size of 2. The dropout

peration with a rate of 0.5 was used to prevent over-fitting. We 

mpirically set the parameter α and β in Eq. (5) to be 0.5 and 0.1, 

espectively. In the training process, we first pretrain the feature 

ncoding network and the attention discovery module for classi- 

cation according to Eq. (3) for 30 epochs. Then, these modules 

ere further fine-tuned and co-trained with both the domain dis- 

riminator and category classifier via Eq. (5) . 

. Experiments 

.1. Experimental setup 

We conduct four groups of experiments, including: (1) AD iden- 

ification (i.e., AD vs. CN classification), (2) MCI conversion predic- 

ion (i.e., pMCI vs. sMCI classification), (3) AD vs. MCI classification, 

nd (4) MCI vs. CN classification. 

For AD identification, six transfer learning settings are consid- 

red: (1) “ADNI-1 → ADNI-2” with ADNI-1 as the source domain 

nd ADNI-2 as the target domain; (2) “ADNI-2 → ADNI-1” with 

DNI-2 and ADNI-1 as the source and target domains, respectively; 

3) “ADNI-1 → ADNI-3” with ADNI-1 and ADNI-3 as the source 

nd target domains, respectively; (4) “ADNI-1 + ADNI-2 → ADNI- 

” with the combination of ADNI-1 and ADNI-2 as the source do- 

ain and ADNI-3 as the target domain; 5) “ADNI-1 → AIBL” with 

DNI-1 and AIBL as the source and target domains, respectively; 

nd 6) “ADNI-1 + ADNI-2 → AIBL” with the combination of ADNI- 

 and ADNI-2 as the source domain and AIBL as the target do- 

ain. Since the number of MCI subjects in AIBL is small (i.e., 32) 

nd there is no pMCI and sMCI labels in ADNI-3, we only evalu- 

te the performance of MCI conversion prediction on two transfer 

earning settings: (1) “ADNI-1 → ADNI-2”; and 2) “ADNI-2 → ADNI- 

”. For AD vs. MCI classification, four transfer learning settings 

re considered: (1) “ADNI-1 → ADNI-2”; (2) “ADNI-2 → ADNI-1”; 

3) “ADNI-1 → ADNI-3”; and (4) “ADNI-1 + ADNI-2 → ADNI-3”. For 

CI vs. CN classification, four transfer learning settings are consid- 

red: (1) “ADNI-1 → ADNI-2”; (2) “ADNI-2 → ADNI-1”; (3) “ADNI- 

 → ADNI-3”; and (4) “ADNI-1 + ADNI-2 → ADNI-3”. 
5 
Four metrics were employed for performance evaluation in the 

xperiments, i.e., classification accuracy (ACC), sensitivity (SEN), 

pecificity (SPE), and area under the receiver operating charac- 

eristic curve (AUC). Denote TP , TN , FP , FN as the true positive, 

rue negative, false positive and false negative, respectively. Then, 

hese four evaluation metrics can be defined as ACC = 

TP+TN 
TP+TN+FP+FN , 

EN = 

TP 
TP+FN , and SPE = 

TN 
TN+FP . For each metric, a higher value in- 

icates better classification performance. 

.2. Competing methods 

In our experiments, we compared the proposed AD 

2 A with four 

and-crafted feature-based domain adaptation methods, including 

1) Transfer Component Analysis ( TCA ) ( Pan et al., 2010 ), (2) Sub-

pace Alignment ( SA ) ( Fernando et al., 2013 ), (3) Geodesic Flow 

ernel ( GFK ) ( Gong et al., 2012 ), and (4) Correlation Alignment

 CORAL ) ( Sun et al., 2017; Kumar et al., 2017 ). We also compare

D 

2 A with two state-of-the-art deep learning methods, includ- 

ng (1) VoxCNN ( Korolev et al., 2017 ), and (2) Domain-Adversarial 

raining of Neural Network ( DANN ) ( Ganin and Lempitsky, 2015 ). 

he four hand-crafted feature-based methods use gray matter vol- 

mes of 90 regions defined in the AAL template as the feature rep- 

esentation of MRIs, and logistic regression as the classifier. The 

eep learning methods (i.e., VoxCNN, DANN and our AD 

2 A) learn 

RI feature representations automatically from data in an end-to- 

nd manner. We briefly introduce these competing methods as fol- 

ows. 

1) TCA ( Pan et al., 2010 ). In the TCA method, several transfer com- 

ponents are learned based on the MR image features in dif- 

ferent domains. Then, Maximum Mean Discrepancy (MMD) is 

utilized in the Reproducing Kernel Hilbert Space to make the 

distribution of multiple domains close to each other. In the ex- 

periments, we use a linear kernel for feature learning in TCA. 

We set the four key parameters of TCA as σ = 2 , μ = 1 , λ = 0 ,

γ = 0 . 1 , respectively. 

2) SA ( Fernando et al., 2013 ). In the SA method, MRI features 

of source and target domains are represented by a subspace 

spanned by eigenvectors. Then a mapping function is learned to 

align the subspace representations by minimizing the Bregman 

matrix divergence. The parameter for the new feature dimen- 

sion in SA is set to 20. 

3) GFK ( Gong et al., 2012 ). In the GFK method, low dimensional 

representations of the MRIs from the source and target domain 

are learned. The data distribution difference is reduced by ex- 

ploring the low-dimensional data structures that are domain- 

invariant. The parameter of the subspace dimension in GFK is 

set to 20. 

4) CORAL ( Sun et al., 2017 ). In the CORAL method, domain shift is 

minimized by aligning the second-order statistics of source and 

target distributions. CORAL needs to compute the covariance of 

the source and target features without extra parameters. 

5) VoxCNN ( Korolev et al., 2017 ). VoxCNN is a deliberately de- 

signed CNN model for MRI-based dementia classification. It 

contains ten 3 × 3 × 3 Conv layers (with the channel numbers 

of 8, 8, 16, 16, 32, 32, 32, 64, 64, and 64, respectively) for fea-

ture learning, and two fully-connected layers for classification. 

Note that this VoxCNN method does not include any data adap- 

tation process, since the model is trained on the source domain 

and directly applied to the target domain. 

6) DANN ( Ganin and Lempitsky, 2015 ). DANN is a state-of-the-art 

adversarial learning-based domain adaptation method that has 

been widely used in modern medical imaging tasks ( Yang et al., 

2019; Kamnitsas et al., 2017; Javanmardi and Tasdizen, 2018 ). It 

adopts AlexNet for feature learning and a domain classifier for 

domain adaptation. Different from our model, it only aligns fea- 
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Table 2 

Results of seven methods in AD identification (i.e., AD vs. CN classification) in six different transfer 

learning settings. 

Source domain → target domain Method ACC (%) SEN (%) SPE (%) AUC (%) 

ADNI-1 → ADNI-2 TCA 74.39 56.79 88.29 80.55 

SA 74.65 61.72 84.88 80.10 

GFK 65.40 55.56 73.17 70.33 

CORAL 77.65 82.71 73.65 85.16 

VoxCNN 83.65 85.80 81.95 90.43 

DANN 87.19 83.33 90.24 90.77 

AD 

2 A (Ours) 89.92 87.65 91.70 94.01 

ADNI-2 → ADNI-1 TCA 73.62 66.83 79.65 80.61 

SA 73.39 59.51 85.71 80.12 

GFK 62.16 49.27 73.59 65.05 

CORAL 76.38 72.20 80.09 84.00 

VoxCNN 82.33 70.24 93.07 89.94 

DANN 84.17 79.51 88.31 90.01 

AD 

2 A (Ours) 87.84 86.83 88.74 92.07 

ADNI-1 → ADNI-3 TCA 76.35 60.00 79.33 80.15 

SA 77.89 56.67 81.76 80.33 

GFK 74.55 61.67 76.90 72.22 

CORAL 71.21 58.33 73.56 84.50 

VoxCNN 86.11 61.67 90.57 89.07 

DANN 88.17 61.67 93.00 92.46 

AD 

2 A (Ours) 92.03 66.67 96.65 95.01 

ADNI-1 + ADNI-2 → ADNI-3 TCA 80.21 63.33 83.28 83.00 

SA 83.55 56.67 88.45 85.29 

GFK 75.32 65.00 77.20 76.10 

CORAL 76.35 63.33 78.72 85.87 

VoxCNN 87.66 66.67 91.18 90.74 

DANN 88.69 71.67 91.79 92.82 

AD 

2 A (Ours) 92.54 75.00 95.74 95.66 

ADNI-1 → AIBL TCA 68.34 32.39 74.05 50.92 

SA 69.69 36.62 74.94 51.37 

GFK 59.85 46.48 61.97 50.25 

CORAL 54.44 45.07 55.93 54.48 

VoxCNN 85.91 66.20 89.04 86.06 

DANN 86.49 73.24 88.59 90.10 

AD 

2 A (Ours) 88.80 85.92 89.26 92.73 

ADNI-1+ADNI-2 → AIBL TCA 69.31 30.99 75.39 51.69 

SA 74.02 26.46 85.84 52.33 

GFK 63.71 36.62 68.00 50.90 

CORAL 57.72 50.70 58.84 57.24 

VoxCNN 87.07 83.10 87.70 92.28 

DANN 88.03 80.28 89.26 93.05 

AD 

2 A (Ours) 90.35 87.32 90.83 95.37 
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ture distributions of source and target domains in the top fully- 

connected layers, whereas our method also aligns the attention 

maps learned from convolution layers (with more spatial infor- 

mation). 

.3. Results of cross-domain Classification 

We first evaluate the proposed AD 

2 A and the competing meth- 

ds in cross-domain problems , with one dataset used as the source 

omain and the other as the target domain. In this group of experi- 

ents, 80% source samples are used for training and the remaining 

0% source samples are used for validation. Target samples (with 

n equal number of the training source data) are used for model 

raining, and these target samples have no label information. More 

iscussions on the number of target samples are reported in the 

upplementary Materials . 

.3.1. AD vs. CN classification 

Table 2 reports the results achieved by different methods in the 

ask of AD identification. From Table 2 , one can observe that the 

roposed AD 

2 A consistently outperforms the conventional hand- 

rafted feature based methods and the deep learning method in 

ix transfer learning settings. Besides, our AD 

2 A achieves overall 

etter performance in the setting of “ADNI-1 + ADNI-2 → AIBL”

han “ADNI-1 → AIBL”. This implies that training with more di- 
6 
erse data in the source domain may enhance the robustness of 

earned models when applied to the target domain. 

.3.2. MCI conversion prediction 

Table 3 reports the results achieved by different methods in the 

ask of MCI conversion prediction. From Table 3 , we can see that 

he performance of seven methods in “ADNI-2 → ADNI-1” is usu- 

lly worse than “ADNI-1 → ADNI-2”. This result could be caused 

y imbalanced pMCI (i.e., 88) and sMCI (i.e., 253) subjects in ADNI- 

. Also, results in Tables 2 and 3 show that accurately predicting 

he future conversion of MCI subjects is more challenging than the 

ask of AD identification, while our AD 

2 A still achieves the overall 

est performance. 

.3.3. AD vs. MCI classification 

Results achieved by different methods in the task of AD vs. MCI 

lassification are shown in Table 4 . From Table 4 , we can see that

he proposed AD 

2 A still achieves the best performance among the 

onventional and deep learning methods. In addition, our AD 

2 A 

ields overall better results in the setting of “ADNI-1 + ADNI-2 

 ADNI-3” than “ADNI-1 → ADNI-3”. This again validates that us- 

ng more diverse training data helps produce models with higher 

ransferability for multi-site MRI harmonization. 
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Table 3 

Results of seven methods in MCI conversion prediction (i.e., pMCI vs. sMCI classification) in two dif- 

ferent transfer learning settings. 

Source domain → target domain Method ACC (%) SEN (%) SPE (%) AUC (%) 

ADNI-1 → ADNI-2 TCA 70.09 43.18 79.45 61.33 

SA 67.44 34.09 79.05 58.29 

GFK 69.20 42.05 78.66 55.17 

CORAL 68.91 50.00 75.49 67.57 

VoxCNN 73.21 34.09 86.96 74.56 

DANN 75.07 52.27 83.00 76.01 

AD 

2 A (Ours) 78.01 53.41 86.56 78.82 

ADNI-2 → ADNI-1 TCA 58.33 53.94 63.27 60.11 

SA 58.65 57.58 59.86 57.33 

GFK 54.17 47.88 61.22 51.00 

CORAL 59.61 40.61 80.95 58.45 

VoxCNN 63.14 64.24 61.90 66.42 

DANN 66.99 60.61 74.14 67.87 

AD 

2 A (Ours) 69.88 65.45 74.82 71.41 

Table 4 

Results of seven methods in AD vs. MCI classification in four different transfer learning settings. 

Source domain → target domain Method ACC (%) SEN (%) SPE (%) AUC (%) 

ADNI-1 → ADNI-2 TCA 63.62 22.22 83.28 58.76 

SA 64.02 25.31 82.40 61.25 

GFK 65.01 35.80 78.89 64.10 

CORAL 67.99 29.01 86.51 67.40 

VoxCNN 69.58 46.91 80.35 70.79 

DANN 73.76 41.98 88.86 75.02 

AD 

2 A (Ours) 75.55 46.29 89.44 77.67 

ADNI-2 → ADNI-1 TCA 53.57 22.44 74.04 58.21 

SA 53.80 21.95 74.68 60.12 

GFK 60.35 43.41 71.47 63.65 

CORAL 67.70 41.46 84.93 66.79 

VoxCNN 68.09 41.95 85.26 68.96 

DANN 68.47 42.43 85.57 69.65 

AD 

2 A (Ours) 70.41 43.90 87.82 71.99 

ADNI-1 → ADNI-3 TCA 71.84 46.67 80.90 60.48 

SA 73.11 51.67 80.33 59.30 

GFK 64.29 50.00 69.10 51.75 

CORAL 67.23 51.67 72.47 69.67 

VoxCNN 76.89 51.67 85.39 70.15 

DANN 79.83 53.33 88.76 72.90 

AD 

2 A (Ours) 81.51 55.00 90.45 75.88 

ADNI-1 + ADNI-2 → ADNI-3 TCA 72.68 40.00 83.71 67.32 

SA 73.95 41.67 84.83 64.11 

GFK 65.13 38.33 74.16 56.80 

CORAL 68.49 50.00 74.72 69.85 

VoxCNN 78.57 45.00 89.89 74.74 

DANN 81.09 48.33 92.13 75.96 

AD 

2 A (Ours) 82.35 50.00 93.25 77.61 
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.3.4. MCI vs. CN classification 

Table 5 reports the results achieved by different methods in the 

ask of MCI vs. CN classification. From Table 5 , we can see that the

esults of all methods are worse than those in Tables 2–4 , suggest- 

ng that the task of MCI vs. CN classification is quite challenging. 

his can be attributed to that the MCI and CN subjects are rela- 

ively closer in the MRI feature space, since only very subtle struc- 

ural changes occur in brain MRIs of MCI subjects. 

.4. Results of within-domain Classification 

We further evaluate the performance of different methods for 

ithin-domain classification by using the mixed data from ADNI-1, 

DNI-2, ADNI-3 and AIBL. A 5-fold cross-validation strategy is used 

ere. That is, we first randomly partitioned all AD and CN subjects 

rom these four datasets into five folds. One of these five folds is 

sed as the testing set (target domain) alliteratively, while the re- 

aining four folds are used as the training set (source domain). 

he AD vs. CN classification results of different methods in each 

old are listed in Table 6 . 
7 
Table 6 suggests that the proposed AD 

2 A can achieve the overall 

uperior performance in terms of both ACC and AUC values, com- 

ared with those in Table 2 . This can be attributed to the decrease

n distribution difference between the source and target domains 

hen performing cross-validation on mixed data of four datasets. 

. Discussion 

In this section, we will investigate several major components 

n the proposed AD 

2 A, analyze the influences of parameters, and 

resent the limitations of the current work. Besides, we study the 

nfluence of a fine-tuning strategy (i.e., using a part of labeled tar- 

et data for network refinement), and report the experimental re- 

ults in the Supplementary Materials . 

.1. Ablation study 

The proposed AD 

2 A consists of two key components, i.e., 

he attention discovery module and the 2) domain discriminator . To 

valuate their contribution, we compare AD 

2 A with its three vari- 
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Table 5 

Results of seven methods in MCI vs. CN classification in four different transfer learning settings. 

Source domain → target domain Method ACC (%) SEN (%) SPE (%) AUC (%) 

ADNI-1 → ADNI-2 TCA 57.88 53.96 64.39 58.19 

SA 58.05 54.25 64.39 55.62 

GFK 59.52 54.55 67.80 58.14 

CORAL 60.44 62.46 57.07 63.60 

VoxCNN 61.72 58.65 66.83 63.90 

DANN 64.10 59.53 71.71 69.58 

AD 

2 A (Ours) 67.03 63.64 72.68 70.33 

ADNI-2 → ADNI-1 TCA 53.22 48.08 60.17 54.25 

SA 54.14 47.76 62.77 54.72 

GFK 55.25 47.44 65.80 55.18 

CORAL 60.41 55.77 66.67 60.05 

VoxCNN 60.77 56.09 67.10 65.12 

DANN 63.90 60.90 67.97 67.55 

AD 

2 A (Ours) 65.19 61.53 70.13 69.96 

ADNI-1 → ADNI-3 TCA 59.17 38.20 70.51 58.68 

SA 54.24 22.47 71.43 58.12 

GFK 52.46 23.03 68.39 52.51 

CORAL 60.35 28.65 77.51 52.67 

VoxCNN 62.92 42.13 74.16 59.06 

DANN 68.84 41.57 83.59 64.90 

AD 

2 A (Ours) 70.22 42.70 85.11 67.22 

ADNI-1 + ADNI-2 → ADNI-3 TCA 61.14 33.71 75.99 60.05 

SA 60.16 31.46 75.68 58.55 

GFK 57.99 39.89 67.78 56.72 

CORAL 60.95 40.45 72.04 60.52 

VoxCNN 65.48 41.01 78.72 63.11 

DANN 69.82 41.57 85.11 65.00 

AD 

2 A (Ours) 71.60 44.94 86.02 69.23 

Table 6 

Results of AD vs. CN classification achieved by the proposed method and six competing methods on the mixed data from ADNI-1, 

ADNI-2, ADNI-3 and AIBL using 5-fold cross validation. 

Method 

Fold #1 Fold #2 Fold #3 Fold #4 Fold #5 

ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) 

TCA 73.97 79.88 74.56 80.23 73.39 77.32 74.85 80.98 74.27 79.11 

SA 75.14 80.76 74.26 77.28 73.10 76.09 73.39 77.89 75.43 81.42 

GFK 71.64 70.22 70.17 70.05 69.88 70.30 69.29 70.11 70.46 70.50 

CORAL 73.10 83.79 76.02 84.71 77.20 84.85 78.95 87.75 77.78 85.31 

VoxCNN 83.33 89.02 84.80 90.05 86.25 88.14 85.09 90.12 84.50 89.03 

DANN 90.64 90.02 90.35 90.44 88.89 90.00 90.05 91.75 90.93 91.86 

AD 

2 A (Ours) 92.40 94.76 90.64 90.86 90.93 91.06 92.98 94.31 93.57 94.98 
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nts for ablation analysis. These variants include: (1) ADN that only 

ontains the feature encoding module and the category classifier in 

ig. 1 ; (2) ADN-T that contains the feature encoding module, atten- 

ion discovery module, and the category classifier; and (3) AD 

2 A-S 

hat includes the feature encoding and domain transfer modules. 

ote that ADN and ADN-T do not have domain adaptation mod- 

les. That is, these two models are firstly trained on source data 

nd then directly applied to target data. Fig. 2 shows the AUC re- 

ults achieved by AD 

2 A and its three variants in four cross-domain 

asks. 

From Fig. 2 , we can derive the following observations. First , ADN 

without the attention discovery module and domain discrimina- 

or) yields the worst performance in four classification tasks. Sec- 

nd , the results of AD 

2 A-S (without the attention discovery mod- 

le) and ADN-T (without the domain discriminator) are generally 

nferior to AD 

2 A. These results suggest that both the attention dis- 

overy module and the domain discriminator are useful in boost- 

ng the learning performance. The underlying reason could be that 

he attention mechanism plays a role in feature selection that en- 

bles the model to focus on the discriminative patterns across do- 

ains for dementia identification. And the proposed domain dis- 

riminator helps extract domain-invariant features that are robust 
or cross-domain classification. h  

8 
.2. Parameter analysis 

The parameters α and β in Eq. (5) play important roles 

n balancing the contributions of the attention alignment and 

omain discriminator. To study their influence on the pro- 

osed AD 

2 A model, we vary their values within the range of 

0,0.01,0.02,0.05,0.1,0.2,0.5,1], and report the corresponding AUC 

alues. Fig. 3 reports the experimental results of AD 

2 A with dif- 

erent values of α and β in MCI conversion prediction in the set- 

ing of “ADNI-1 → ADNI-2”. From Fig. 3 , we can see that AD 

2 A

an yield good performance with α ∈ [0 . 05 , 0 . 5] and β ∈ [0 . 01 , 0 . 2] .

lso, with α = 0 or β = 0 , the AUC values of AD 

2 A are not that

ood. This suggests the attention discovery module and the do- 

ain discriminator have positive complementary effects on en- 

ancing transferability. 

.3. Learned attention maps 

We further visualize the generated attention maps for eight 

ubjects from ADNI-1 and ADNI-2, as shown in Fig. 4 . From the 

isualization results, we can see that the most discriminative ar- 

as (denoted by red) for dementia prognosis mainly located in the 

ippocampus ( Mu and Gage, 2011 ) and ventricles ( Ott et al., 2010 ).
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Fig. 2. Ablation study for verifying the effectiveness of different components in AD 2 A. 

Fig. 3. Impact of two parameters, i.e., (top) α (with β = 0 ) and (bottom) β (with α = 0 ), on the proposed method in MCI conversion prediction. 

Fig. 4. Attention maps generated by our AD 2 A for eight typical subjects from ADNI-1 (a) and ADNI-2 (b). The red and blue denote the high and low discriminative capability 

of brain regions in disease identification, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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esides, it can be observed that the discriminative regions within 

D subjects are more distinct than those of MCI (i.e., pMCI and 

MCI) subjects. Considering the fact that structural changes caused 

y AD are relatively easier to be detected than MCI, these results 

uggest that the learned attention maps of the proposed AD 

2 A are 

easonable. 

.4. Visualization of distribution after adaptation 

To intuitively illustrate the effectiveness of the proposed 

ethod, we visualize the data distribution of two datasets (i.e., 

DNI-1, ADNI-2) before and after domain adaptation (via our 

D 

2 A). To visualize the domain heterogeneity before adaptation, 

e randomly selected 200 subjects (AD and CN) from ADNI-1, 

DNI-2, and extracted gray matter volumes of 90 regions defined 
9 
n the AAL template as feature representation of brain MRIs. Then, 

e use the t-SNE algorithm ( Maaten and Hinton, 2008 ) to visual- 

ze their data distributions in Fig. 5 (a), from which we can observe 

hat there is a significant domain shift between ADNI-1 and ADNI- 

. After adaptation via AD 

2 A, we use the trained network to extract 

eatures of samples from these two datasets, and then use t-SNE 

o plot their distribution as shown in Fig. 5 (b). From Fig. 5 , we can

ee that the domain shift has been largely reduced, suggesting the 

ffectiveness of the proposed method. 

.5. Computational cost 

We now analyze the computational cost of the proposed AD 

2 A 

odel. Since the training process is conducted in an off-line man- 

er, we only analyze the computational cost for the online test 
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Fig. 5. Visualization of (a) the original distribution and (b) the distribution after adaptation via our proposed AD 2 A for two structural MRI datasets (i.e., ADNI-1, ADNI-2). 
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tage for new test MR images. The proposed network was imple- 

ented in PyTorch on a workstation equipped with a GPU (TI- 

ANX, 12G), and it took about 0 . 08 s to predict an input MRI scan.

his result indicates that our AD 

2 A method can perform real-time 

iagnosis of brain diseases, which is very useful in real-world ap- 

lications. 

.6. Limitations and future work 

Although the proposed AD 

2 A model has obtained good perfor- 

ance in brain dementia identification, there are still some limita- 

ions that need to be addressed in the future. 

First , the feature encoding network is trained from scratch in 

he current work. It is interesting to pretrain existing 3D CNNs 

n the other large-scale 3D medical image datasets and fine-tune 

hem on the dementia dataset to further improve the classifi- 

ation performance. Second , only neuroimaging data are consid- 

red in our current work, while demographic information (e.g., 

ge Peters, 2006 ) may also play a role in brain dementia predic- 

ion. It is interesting to incorporate some demographic information 

o improve the classification results. Besides , our current model is 

ainly trained on one domain and transferred to other domains. 

s future work, one can study how to leverage multi-source do- 

ain learning ( Zhao et al., 2020 ) to incorporate more diverse train- 

ng sets into the whole learning process to further enhance the 

obustness and transferability. Furthermore , the size of the train- 

ng samples is still relatively small. It is desired to collect more 

euroimaging data from multi-site MRI studies and use generative 

odels (e.g., generative adversarial network Yi et al., 2019 ) to aug- 

ent the training samples. 

. Conclusion 

In this paper, we proposed an attention-guided deep domain 

daptation (AD 

2 A) framework for multi-site MRI harmonization 

nd applied it to automated brain disorder identification. Specifi- 

ally, the proposed AD 

2 A consists of three main components, i.e., 

 feature encoding model for MRI feature extraction, an attention 

iscovery module to locate disease-related regions in brain MRIs, 

nd a domain transfer module for knowledge transfer between 

he source and target domains. We evaluated the AD 

2 A model 

n four benchmark datasets with T1-weighted structural MRIs ac- 

uired from multiple imaging centers. Experimental results show 

hat this method is effective in identifying brain diseases compared 

o several state-of-the-art methods. 
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